
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 29: 75–95 (1999)

A GENERAL APPROACH FOR COMPUTING UNSTEADY
3D THIN LIFTING AND/OR PROPULSIVE SYSTEMS

DERIVED FROM A COMPLETE THEORY

A. LEROY* AND PH. DEVINANT
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SUMMARY

This paper presents the basis of a numerical method for unsteady aerodynamic computation around thin
lifting and/or propulsive systems with arbitrary variable geometries, involving the velocity field, the
velocity potential, the pressure field and the wake characteristics (geometry and vortex strength). Most of
the corresponding theory actually stems from the unsteady wake model established by Mudry, in which
the wake is considered to be a median layer, characterized by a pair of functions on which Mudry
founded the concept of continuous vortex particle. The governing relations of the continuous problem are
then the flow tangency condition, the wake integro-differential evolution equation, and a flow regularity
condition at the trailing edge. This constitutes a rigorous and complete theoretical formulation of this
problem, from which a discretization scheme and a numerical method of solution are derived. The view
of the vortex wake is similar to the one in the classical vortex lattice approaches, but uses a discrete
vortex particle concept, particularly well suited for the prediction of the unsteady wake deformation.
This, together with the continuous theory, ensures the computing method compares favorably with the
classical methods in terms of flexibility and computing costs. In order to demonstrate the capabilities of
the present method, the calculation of flapping wings of variable geometry is also presented. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Analysis of complex 3D configurations requires computational methods for unsteady aerody-
namics, particularly for the prediction of wake distortions and time variations. For example,
in the case of a two-element airfoil, the wake of the main airfoil is very close to the upper
surface of the trailing edge flap. Similarly, estimated rotorcraft vortex wake shapes can shed
light on one of the most complex problems associated with a helicopter flight, namely the
blade–vortex interaction. For such developments, an improved vortex wake model is needed
so that wake shedding and time variations can be analyzed precisely.

In the general framework of non-separated flows of inviscid incompressible irrotational
fluid, wakes from lifting and/or propulsive systems are represented by vortex sheets and are
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discretized by an arrangement of vortex elements. Two broad types of methods currently exist
for computing these flows, differing in the way they consider the wake.

The first considers the wake as a distribution of doublet type singularities. The wakes are
usually approximated by trapezoidal elements. When the doublet density is assumed to be
constant, this is equivalent to closed vortex rings [1] and therefore corresponds to a vortex
lattice approximation. These vortex lattice elements move with time according to the local
velocity field. Computer developments have allowed direct numerical approach of 3D non-lin-
earized problems of this kind; e.g. References [2–6].

The second type of methods considers the wake to be sufficiently thick, so that it is
represented by volume vortex particles, e.g. References [7–10]. These methods are based on a
volume discretization of the vortex vector, i.e. the velocity curl. To follow the time variation
of a discrete distribution of fluid particles in the wake, with each particle supporting this vortex
vector, a Lagrangian integro-differential formulation based on the Helmholtz equation is used.

In fact, both approaches are more or less based on discrete formulations and are not always
well founded in theory. The first approach, as it is built on an already discretized view of the
problem, entirely overlooks the theoretical problem of wake variation with time. Conse-
quently, this can lead to numerical problems when the wake distortions are large. Nevertheless,
it is used often because of its competitive numerical capabilities in terms of flexibility and
computational costs. Although the vortex particle model seems to offer the possibility of
developing a strictly accurate deformation problem, it has the drawback of high-cost numerical
algorithms, especially for treating the Helmholtz equation using complex regularized schemes
[10].

This paper uses a general non-linear theory for time-dependent problems of a lifting and/or
propulsive system of variable geometry in arbitrary motion in a potential flow. The problem
is first formulated in theory with no reference to any discrete approach and mostly relates to
the wake model established by Mudry [11]. An exact continuous scheme is developed from
this, focusing mainly on the wake shedding and time deformation, so as to develop an efficient
computational scheme for calculating the unsteady airloads and predicting the wake geometry.
This leads to numerical tools offering the flexibility and low computational costs of the first
approach presented above, based on a rigorous theory of the deforming unsteady wake
problem.

Most of this work stems from a thesis written for the Laboratoire de Mécanique et
d’Energétique at the Université d’Orléans [15].

2. GENERAL FRAMEWORK OF THE PROBLEM

A lifting–propulsive system consists of 3D elements of arbitrary geometry driven by arbitrary
motions. In many cases, these elements, such as blades of helicopter rotors, rotating propellers
and wind turbines, as well as flapping wings, can be considered as thin. That is why the
elements dealt with here are assumed to be surfaces.

In the case of a viscous fluid, the flow is irrotational over the entire flowfield, except at the
body’s solid boundaries and in the wake, where it results from the mixture of the two
boundary layers from the lower and upper surfaces of the wing. In the case of evanescent
viscosity, the boundary layers and wake are thin and in the limiting case of an inviscid flow,
the wake has to be considered as an infinitely thin layer, and more particularly as the union
of two distinct fluid surfaces issuing from the lower and upper surfaces of the wing (Figure 1).
The two boundary layers no longer exist. The boundary condition of fluid adherence is
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replaced by a flow tangency condition. Therefore, the wake must be considered as a single
surface of two superimposed distinct fluid surfaces, coming from the two sides of the wing’s
edge, and remaining in contact with each other after leaving it. Then, for an inviscid fluid, the
wake is a slip surface, and as it cannot sustain pressure differences, the wake is a discontinuity
surface for the tangential velocity component of the fluid particles located on both sides of this
surface.

Consider a variable-geometry thin airfoil A in motion relative to a surrounding fluid and the
user-defined shedding lines I (trailing edge in general) of its wake S. The fluid is assumed to
be inviscid and incompressible over the entire irrotational flow field, excluding the wing and its
wake. Therefore, a velocity potential f can be defined in an inertial frame of reference that will
satisfy Laplace’s equation:

Df=0, (1)

and will be subject to the following boundary conditions:

– flow tangency, requiring zero normal velocity across the wing,
– quiescent freestream fluid,
– Kutta–Joukowski condition of smooth flow off the shedding edge,
– dynamical condition of pressure continuity across the wake.

By use of Green’s theorem, it can be shown that the velocity potential on and outside the
surfaces A and S, is given by

P�R3 � f(P)= −
1

4p

&&
A

s(M)
r� · n� M

r3 dS−
1

4p

&&
S

m(M)
r� · n� M

r3 dS, (2)

where s and m are, respectively, the doublet strengths over the entire surfaces A and S. s and
m are equal to the opposite of the velocity potential discontinuity across A and S: s= − [f ]A

Figure 1. Wake in viscous fluid and in inviscid fluid.
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Figure 2. Parametrisation of a surface.

and m= − [f ]S. P is a field point, n� M is the outward normal in M, and r� =MP
�

, r=
r� 
. For
P on A or S, the first or second integral in Equation (2), respectively, is singular. It is a Cauchy
integral which can be properly evaluated in the principal value sense. This doublet distribution
solution automatically fulfills the boundary condition of quiescent fluid at infinity.

The derivation of the velocity potential induced by such a general doublet distribution on
any surface S at any point in the field, is

grad
�

f= −
1

4p

&&
S

m(M)grad
� �r� · n� M

r3

�
dS. (3)

The resulting formulation is then [11]

grad
�

f= −
1

4p

&&
S

(n� M�9a m(M))�r�
r3 dS+

1
4p

&
(S

m(M)grad
�

M
�1

r
�
�dM

�
, (4)

in which (S indicates the oriented edge of S ; 9a is the surface gradient of a scalar quantity
defined on S, relative to a local frame associated with S ; whereas grad

�
M is the gradient of a

scalar quantity defined in the 3D domain R3 and evaluated at the point M of S. This
expression shows the usual two terms. The first is a surface integral, involving the surface
gradient of the doublet density distribution on the surface. The second is a curvilinear integral
involving the value of doublet density distribution along the edge of the surface. It can be
noted that the second term vanishes when either S is a closed surface or m is equal to zero at
any free edge of S. In the case of an irrotational flow, and if S is a singular surface for the
velocity field, e.g. a thin wake, Reference [11] showed that for Equation (4) to be the induced
velocity by this double-layer surface S, the second term in Equation (4) must be equal to zero.
A wake is not a closed surface, therefore the doublet density m must be zero at any free edge
of S.

In case S is the union of a thin airfoil A and its thin wake S, m is zero at the free edge. Then,
the second term of Equation (4) vanishes, but it does not vanish when only a part of S is
considered (A and S separately considered, a panel resulting from a discretization of S, . . . ).

3. GENERAL THEORETICAL FORMULATION

3.1. Unsteady wake and the concept of 6ortex particles

From the concept of slip surface, Mudry [12] developed a general theory for unsteady wakes,
considered as vortex sheets, in the general framework of inviscid incompressible fluid and
irrotational flow. The main results of his theory follow.

As the wake S is a surface, Mudry introduced a two-parameter description of its geometrical
shape, as shown in Figure 2. For the points N of the wake S, and O the origin of the
co-ordinate system in relation to an inertial frame, any parametrisation 6� is defined as
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!(q1, q2)�V¦R2

N= (x1, x2, x3)�R3 t�I¦R � ON
�

=6� (q1, q2, t)�S. (5)

As the wake is a superimposition of two distinct fluid surfaces, it could be described by two
parametrisations referring to these two surfaces: 6� + and 6� −, noting �+� for the upper
surface and �−� for the lower. But as Mudry founded his theory on the median layer
concept, which Helmholtz first introduced in terms of median velocity, Mudry characterized
the vortex sheet representing the wake, by the non-unique pair of functions [13]

– the ‘median parametrisation’, 6� , such that 6� verifies the following wake time variation
equation:

(6� (q1, q2, t)
(t

=
Ub + +Ub −

2
=Ub *(6� (q1, q2, t)), (6)

where Ub * is the median velocity field due to the flow, i.e. the half-sum of the two fluid
surfaces velocities. Then, 6� determines the geometrical shape of the vortex sheet and its
deformation.

– the associated ‘median vortex density’, g� , that describes the vortex sheet strength. It is a
function of the local velocity jump and of the geometrical description of the wake carried
out by 6� :

g� (q1, q2, t)=Nb � [Ub ]=
�(6�
(q1�

(6
�

(q2

n
� [Ub ]=g1 (6�

(q1+g2 (6�
(q2, (7)

where [Ub ]=Ub + −Ub − indicates the velocity jump through the surface considered.

(6� , g� ) clearly states the concept of continuous vortex particle to represent the wake with no
discretization. Any vortex particle position can be defined by the point N : t � ON

�
=

6� (q1, q2, t).
From the wake time variation equation (6), Mudry demonstrated the fundamental time-con-

servation property for the two contravariant components ga (a=1, 2) of the median vortex
density. This property is derived from the choice of the parametrisation 6� together with the
pressure continuity condition through the wake.

Since the flow is assumed to be irrotational, a function G, the surface discontinuity potential,
can be defined as being equivalent to the potential jump through S: G=f+ −f− = [f ].
Mudry has shown that g� is derived from G, because G is given by

[Ub ]=9a G=9a [f ], (8)

where 9a is a surface gradient. Thus, g1= −(G/(q2 and g2=(G/(q1, and G does not depend
on time.

Then, using G and g� , the velocity potential and the velocity induced by the vortex sheet S
take the forms

f(x, t)=
1

4p

&&
V

G(q1, q2)
(x� −6� ) · ((16� �(26� )


x� −6� 
3 dq1 dq2, (9)

Ub (x, t)=grad
�

f(x, t)=
1

4p

&&
V

g� �r�
r3 dq1 dq2−

1
4p

&
(V

G grad
�

x

�1
r
�
�dj
�

. (10)

The integration domain is a known range defined by the definition plane (q1, q2) of the
parametrisation 6� , and does not explicitly depend on time.

The wake shedding is taken into account by specifying that q1 is equal to the shedding edge
parameter linked to a shedding edge representation: q, and q2 to the shedding time: t,
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q1=q, q�J¦R, q2=t, t� [0, t ]. (11)

Thus, from a Lagrangian representation hb (q, t) of the shedding edge I in the inertial frame:

OP
�

=hb (q, t), (12)

the shedding condition of the wake can be defined as

6� (q, t, t)=hb (q, t). (13)

The shedding relative velocity Vb re, which is the velocity of the vortex particle at and relative
to I, is derived from Equation (13), as

Vb re=
�(6� (q, t, t)

(t
�

e

−
(hb (q, t)
(t

, (14)

where (hb /(t is actually the absolute velocity of the shedding edge points and ((6� /(t)e is the
absolute velocity of the vortex particle being shed.

Studying the shedding mechanism, Mudry showed that a shedding plane related to a pair
(q, t) exists at every instant, defined by the two vectors Vb re and (hb /(q. In the case of a thin
airfoil it can be shown that this plane is tangent to the airfoil at I.

Because of the time-conservation property of the two contravariant components of the
vortex density, these components are determined when the particle is shed. Therefore, the
problem of computing the wake, which consists of determining the position and density of the
vortex particles once shed, reduces to solving the integro-differential equation (6):

(6� (q, t, t)
(t

=
1

4p

&&
V

g� (q %, t %)� (6� (q, t, t)−6� (q %, t %, t))

6� (q, t, t)−6� (q %, t %, t)
3 dq % dt %+Ub A(6� (q, t, t)). (15)

Equation (15) governs the new position of the vortex particles at every moment. Here, Ub A

represents the velocity field induced by the airfoil.

3.2. General non-linear equations

Let a variable-geometry thin airfoil A be considered. A and its wake S, shed at the edge I,
are vortex sheets in an inviscid fluid. The geometrical shape is known for the airfoil, whereas
it is unknown for the wake. From Mudry’s general theory, the general problem of non-linear
unsteady 3D flow around a thin airfoil can then be formulated exactly.

As for the wake, a parametrisation x� , defined in the inertial frame, and an associated vortex
density db related to the airfoil are introduced:

M�AUOM
�

=x� (u1, u2, t), (u1, u2)�U¦R2, (16)

db (u1, u2, t)=
� (x�
(u1�

(x
�

(u2

�
� [Ub ]=d1 (x�

(u1+d2 (x�
(u2. (17)

The contravariant components (d1, d2) are dependent on time and are governed by the flow
tangency condition on A. They are derived from K, the discontinuity potential on A, given by

[Ub ]=9a K=9a [f ]. (18)

H, the discontinuity potential on the union of A and S (H=G on S, H=K on A), must be
equal to zero on the borders of A and S, excluding their common border I. Through I, the
variations of H will be governed by the Kutta–Joukowsky condition.
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When treating time-dependent motion of bodies, the selection of the co-ordinate systems
becomes very important. It is useful to describe the unsteady motion of the airfoil in an
airfoil-fixed frame R= (O %; x, y, z), as shown in Figure 3. The motion of R corresponds to the
motion of the rigid airfoil. It is then prescribed in an inertial frame of reference RG=
(O ; X, Y, Z) and is assumed to be known. The kinematic velocity Vb E of an airfoil point, as
viewed in the inertial frame, is given by

VE=Vb O%+Va �r� , (19)

where Vb O%= ((XO%/(t, (YO%/(t, (ZO%/(t) is the velocity of O %, r� is the position vector in the
(x, y, z) system and Va is the rate of rotation of the airfoil-fixed frame. In order to define Vb E

in the airfoil-fixed frame, a transformation between these two co-ordinate systems must be
established.

An additional relative motion within the (x, y, z) system describes the variable geometry of
the airfoil (flap deflections, time variation of twist, etc.) in addition to the average motion of
the airfoil. Thus the deformation velocity in the airfoil-fixed frame is defined as

Vb D=
(x�
(t

. (20)

In the case of a rigid airfoil, x� (u1, u2, t) and hb (q, t) do not depend on time, and this velocity
vanishes.

Figure 4 shows how the physical problem is then formulated in two domains, respectively,
related to the definition plane of the parametrisations 6� and x� . This is one of the original
features of this approach, as the problem is formulated and solved for both vortex sheets
(airfoil and wake) in their respective 2D parametrisation planes.

When looking at the velocities induced (Equation (4)) by each surface A and S considered
independently, note that both integrals are singular at their common edge I. Therefore, the
joining of these two sheets implies some condition on their characteristics so that the resulting
fluid velocity field is no longer singular across I, to insure a regular fluid flow (singularity
removal procedure). This has been thoroughly examined in References [14] and [15], and the
resulting Kutta–Joukowsky condition in the case of a thin airfoil has been formulated
explicitly. The conditions for the fluid velocity to be regular across I may then be readily
expressed as

Figure 3. Airfoil-fixed frame R and Galilean frame RG.
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Figure 4. Physical field and parametrisation planes.

(i) K=G, (ii)
(K
(n

=
(G
(n

, (21)

where n� is the geodesic normal vector to I (in a common tangent plane to A and S). This
means that the potential jump [f ]=H, and the normal (to I) component ( [f ]/(n=(H/(n of
its surface gradient must be continuous across I. The first condition (i) is, in fact, the
Kutta–Joukowsky condition considered in practice in the classical vortex lattice approaches
[3–6]. But this should only apply, from a strict theoretical view point, to steady linearized
flows around airfoils with unswept trailing edges. On an other hand, as soon as we have steady
flows with swept trailing edges or unsteady flows for any trailing edge sweep, a strict
theoretical approach also has to consider the gradient normal component.

The governing equations of the problem contain f, denoted 8 in airfoil-fixed frame, Ub , p
defined in D×I, (6� , g� ) related to S and H. These equations are expressed in the airfoil-fixed
frame.

� In D/S:
Irrotational flow of an in6iscid incompressible fluid :

Ub =grad
�

8, D8=0. (22)

Bernoulli’s equation :
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p�−p
r

=
1
2

Ub 2+
(8

(t
−Vb E · Ub . (23)

� On A :
Flow tangency condition :

Ub · n� = (Vb E+Vb D) · n� . (24)

� Through I (t=t):
Shedding condition :

hb (q, t)=6� (q, t, t). (25)

Shedding relati6e 6elocity :

Vb re=
�(6�
(t
�

e

−
(hb
(t

. (26)

Kutta–Joukowsky condition :

K=G and
(K
(n

=
(G
(n

. (27)

� On S:
Zero pressure jump :

[p ]=0. (28)

Wake time 6ariation equation :

(6� (q, t, t)
(t

+Vb E(6� (q, t, t), t)

=
1

4p

&&
U

db (u1, u2, t)� (6� (q, t, t)−x� (u1, u2, t))

6� (q, t, t)−x� (u1, u2, t)
3 du1 du2

+
1

4p

& t

0

&
J

g� (q %, t %)� (6� (q, t, t)−6� (q %, t %, t))

6� (q, t, t)−6� (q %, t %, t)
3 dq % dt %. (29)

Here the curvilinear integral of Equation (10) disappears because of both the Kutta–
Joukowsky condition on I and the boundary condition H=0 on the border of the union of
surfaces A and S.

The non-linear theoretical problem of a thin airfoil in an unsteady flow is then rigorously
settled. The wake shedding is described by the relative shedding velocity, which determines the
shedding direction of the vortex particles, and by the Kutta–Joukowsky condition, which
determines the contravariant components of the vortex density (or the discontinuity potential)
shed in the wake. The variable-geometrical shape of the wake is governed by the wake time
variation equation for the vortex particle (6� , g� ). Equations (24), (26), (27) and (29) form a
non-linear integro-differential system to be solved and its solution requires a numerical
approach.

In many usual configurations, the wake shedding can satisfactorily be prescribed on the
shedding edge flight path. In this case, Vb re can be assumed to be equal to the flight path
velocity of I, i.e.

Vb re= −
(hb
(t

. (30)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 75–95 (1999)



A. LEROY AND PH. DEVINANT84

Thus, the integro-differential system solution can be simplified, because Vb re is no longer an
unknown. This assumption does not allow us to compute a wake shedding from a leading
edge, or from airfoil tips, but it is very suitable in the case of a trailing edge.

The pressure jump can be computed using the Bernoulli equation (23) in the airfoil-fixed
system of reference. The pressure difference across the airfoil is then

Dp
r

=
p− −p+

r
=

1
2

(Ub +2
−Ub −2

)+
( [8 ]
(t

+Vb E · [Ub ]. (31)

Therefore, in terms of the median velocity Ub *= (Ub + +Ub −)/2, and of the discontinuity
potential K, Equation (31) becomes

Dp
r

= (Ub *+Vb E) · 9a K+
(K
(t

. (32)

Knowing the pressure and the potential field, we can compute the forces and moments,
as well as all the desired flow characteristics, such as surface velocity surveys.

The total force obtained by this pressure difference integration does not account for the
leading-edge suction force. This force is a direct consequence of the singularity occurring at
the leading-edge in the case of a thin airfoil, and mainly contributes to the drag force.
Apart from its formulation by Blasius’ formulas in steady 2D flow, few works deal with
this force computation in a more general framework.

The general problem of the non-linear unsteady 3D inviscid flow around a lifting–
propulsive system is then completely and rigorously formulated. The shedding and deform-
ing is formulated explicitly for the wake, so that it will be possible to simulate the distorted
wake. This general theory provides the basis for a straight discretization and for a numeri-
cal method of solution.

4. DISCRETE FORMULATION AND NUMERICAL METHOD OF SOLUTION

The discrete scheme and the numerical method presented in this section constitute one
possible implementation of the theory presented above, the aim of which is to demonstrate
that such an approach provides a competitive code in terms of computing costs and
versatility.

4.1. Discretization of geometrical surfaces

Discretization of the two geometrical surfaces, A and S, is performed in the definition
planes of their respective parametrisations x� and 6� . Hence the approximations of x� and 6�
are defined in relation to a subdivision of their respective definition planes. The simplest
possibility is to approximate the definition planes by the union of small uniform quadrilat-
eral panels, as shown in Figure 5, and to approximate x� and 6� by their values at the
center of these panels. These approximate values of x� and 6� are then the control or
collocation points, where discrete equations are solved.

With the help of the parametrisations, it is possible to build an irregular distribution of
airfoil points. For example, in the case of the airfoil, the airfoil tips, the leading edge and
geometry discontinuities are regions of large flow characteristic variations. Under this con-
dition, the precision of the results can be improved by using a suitable variable point
spacing.
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4.2. Discretization of a doublet distribution

In the present study, a step distribution of the discontinuity potential H over the panels was
first considered. Referring to Equation (10), this distribution is equivalent to a vortex ring
distribution in the definition planes of x� and 6� ; i.e. in Equation (10), only the curvilinear
integral has to be approximated. Therefore the velocity is the one induced by a vortex ring
singularity distribution, e.g. References [1] and [15]. Consequently, this type of approximated
distribution is not very different from a classical vortex lattice approach, except that the
discretization is performed in the parametrisation planes instead of the physical plane. In terms
of induced velocity, it is well-known that such a low-order discretization model offers good
results and, according to Reference [3], is sufficient to predict airload accurately. For this
vortex ring model, an approximation of the parametrisation is needed at the corner of the
panels. This is easily obtained from the collocation points, using a classical interpolation
scheme. This discretization model has been retained for the vortex sheet representing the
airfoil. But for the wake, it is necessary to use the vortex particle concept in order to deal with
its time variation and deforming.

The velocity induced by a continuous distribution of vortex particles over S is

Ub (x, t)=
1

4p

&&
V

g� �r� (x� , 6� )
r(x� , 6� )3 dq dt−

1
4p

&
(V

G grad
�

x
�1

r
�
�dj
�

. (33)

The curvilinear integral depends on the condition at the border of S, and can be approximated
by a vortex ring there, whereas the surface integral has to be approximated over the entire
surface S. A discrete vortex particle concept is introduced. One possible way to define this is
to consider a step distribution of the contravariant components ga (a=1, 2) of the vortex
density over the panels. Hence, a discrete vortex particle scheme is derived from this
approximation and that of the parametrisation 6� . Using i, j as indexing letters referring to a
panel (i chordwise and j spanwise), the velocity induced by the vortex particle ij is

Figure 5. Discretisation of geometrical surfaces.
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Ub (x):h1h2g ij
q ((6� /(q)ij� (x� −6� ij)


x� −6� ij
3 +h1h2g ij
t

((6� /(t)ij� (x� −6� ij)

x� −6� ij
3 , (34)

where h1 and h2 are, respectively, the chordwise and spanwise increments of the discrete plane
(q, t). In Equation (34), the 6-derivates referring to the definition plane must be approxi-
mated. A finite difference scheme is suitable. The velocity induced by a discrete vortex particle
distribution is therefore

Ub (x):%
ij

h1h2�g ij
q ((6� /(q)ij� (x� −6� ij)


x� −6� ij
3 +g ij
t

((6� /(t)ij� (x� −6� ij)

x� −6� ij
3

�
. (35)

It is well-known that any discretization of this type (vortex ring, discrete vortex particle)
introduces a fluid velocity singularity, although the continuous formulation does not present
such a singular behavior. This is the case here, as x� tends to the vortex particle point, i.e. when
r tends to zero. In order to avoid numerical divergence and thereby regularize the singular
behavior of the velocity field, this discrete vortex particle model requires a ‘regularization’
radius rc, which has to be defined. According to Reference [6], the regularization process
retained in the present work, consists of multiplying the induced velocity by the coefficient
r2/(r2+rc2).

Numerical tests have shown that, whereas the discrete vortex particle model is particularly
well suited for the unsteady deforming wake prediction, the vortex ring model was more
accurate concerning the near-field induced velocity prediction, especially when the flow
tangency condition is applied. This is why, in the present study, a double-discretization has
been used for the vortex sheet representing the wake, in the definition plane of 6� :

– the vortex ring model to solve the flow tangency condition,
– the discrete vortex particle model to solve the evolution equation.

Therefore, each panel is associated with a vortex ring or a vortex particle. Changing the
discretization model increases computing time costs very slightly but it yields very good
computational capabilities, especially for simulating wake geometry deformation and time
variation.

A theoretical formulation is available, therefore it is quite possible to think of other schemes
of higher order approximation to improve the velocity field computation.

4.3. Numerical method

The numerical scheme is based on a time stepping procedure. The study time interval [0, T ]
is divided into small time intervals Dt. At the initial instant (t=0), no wake exists. At each
time step including the first one, the airfoil is moved along its flight path and the wake from
the shedding edge can be predicted from the corresponding set of discrete equations of Section
3.2.

At each time step, the local velocity at each control point on the airfoil has to satisfy the
flow tangency condition (24), where the local velocity is the resulting velocity induced by the
combination of the vortex ring distribution in the definition planes of 6� and x� , modeling the
airfoil and its wake. At this stage, the unknowns are the strengths of the airfoil vortex ring
elements and the characteristics of the vortex ring elements currently being shed. The position
of each of the other wake vortex ring elements has been determined by solving the wake time
variation equation during the previous time step, and its strength by the Kutta–Joukowsky
condition, when shed.
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Figure 6. Distribution of airfoil and wake vortex ring elements at the shedding edge J.

At each time step, the wake strip shed during the current time step is a row of free vortex
ring elements, as shown in Figure 6. Their positions must be calculated by the shedding
process. This shedding process is governed by two coupled equations, the Kutta–Joukowsky
condition and the time variation equation. To find the solution, an iterative numerical
approach is generally needed. But, in the present work, the position of these vortex ring
elements is derived directly from the shedding assumption Vb re= −(hb /(t. Thus, in the physical
domain, they correspond to the interval covered by the trailing edge during the time step. Their
strengths are determined by applying the Kutta–Joukowsky condition. With the assumptions
referring to the discretization, condition (ii) of the Kutta–Joukowsky condition (21) disappears
and only the continuity condition of H across I remains. In this case, the discrete Kutta–
Joukowsky condition then consists of setting the strengths of the vortex ring elements equal on
both sides (airfoil and wake) of the trailing edge.

Using the wake shedding procedure, the discretization of the flow tangency equation (24)
derived at the control points yields to the following set of algebraic equations:
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where M and N refer to the number of unknown and known elements respectively. On the
left-hand-side are the unknowns Kl=1, . . . ,M, which are the strengths of the airfoil vortex ring
elements, and which take into account the strengths of the currently shed vortex ring elements
due to the Kutta–Joukowski condition. Ak,l is the velocity influence coefficient, representing
the velocity at the control point k due to the airfoil vortex ring element l and the wake
shedding vortex ring elements. The terms on the right-hand-side are known. B1 represents the
velocity at the control point k due to the kinematic and deformation motion of the airfoil, and
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Ci,j the velocity due to the known wake vortex ring elements. Note that N increases with each
additional time step. Ak,l and Ci,j are complex relations, and their derivation is documented in
Reference [15]. At each time step, the solution of Equation (36) can be obtained by inverting
the matrix A of the influence coefficient. If the shape of the airfoil remains unchanged, the
matrix inversion occurs only once. When the strengths Kl=1, . . . ,M are known, the resulting
aerodynamic loads, forces and moments can be computed.

The discretization of the time variation equation requires a velocity field approximation,
from the vortex ring model for the airfoil and from the discrete vortex particle model for the
wake. Its solution gives the new position of the vortex particles at each time step. The
contravariant components of g� are computed from the approximation of G, which has been
determined once for all at the shedding time by the Kutta–Joukowsky condition. This solution
is obtained here using a Runge–Kutta algorithm. The resolution order of the algorithm
depends both on computation time and accuracy to predict the wake geometry. The higher the
order, the better the wake roll-up is simulated. After several numerical tests, a second-order
algorithm was chosen.

5. RESULTS

5.1. Con6ergence of the numerical process

One part of this work [15] was to carry out some numerical experiments on simple
configurations in order to test the convergence of the numerical process more precisely in
relation to the discretization parameters, such as the time step and the number of airfoil
panels, chordwise and spanwise. The results have shown that the different numerical schemes
behave quite well. In every case, convergence was obtained by improving the discretization
refinement (increasing the number of airfoil panels chordwise and spanwise and decreasing the
time step). For example, Figure 7 illustrates the effect of the reduced time step Dt0 =U�Dt/c (c

Figure 7. Effects of the reduced time step Dt0 on the circulation time variation.
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Figure 8. Sectional circulation time variation of a rectangular planform (AR=3), sudden setting at incidence of 5°.

being the mean airfoil chord) on the time variation of the reduced circulation G/U�c (G
corresponds to [f ] at the trailing edge), at the section y/b=0.1875 (b is the span) of a
rectangular planform airfoil, with an aspect ratio AR=3. The motion is a sudden setting of
the airfoil to 5° of incidence in forward flight at a constant speed U�, from an initial incidence
of 0°. The airfoil is divided into four equally spaced chordwise elements and 40 spanwise.
Figure 7 shows a solution that may be considered as converged (i.e. G hardly changes as the
time step decreases), even with quite large time-step values. This offers interesting prospects in
terms of reduction of computation run-time.

Unless otherwise stated, the results presented below are considered to be converged in
relation to these discretization parameters.

5.2. Comparison of results

Some comparisons were made of our results with those obtained by a classical vortex ring
approach, developed according to Reference [1], and with those obtained by Djodjodihardjo
and Widnall [3]. Only those results obtained for the time variation of the sectional circulation
for rectangular planforms (AR=3 or 6) are presented here for the two following unsteady
motions:

– sudden setting of the airfoil at incidence in a constant speed forward flight U�, from an
initial incidence of 0° (Figures 8 and 9),

– vertical sinusoidal heaving oscillations of the airfoil with reduced period T0 =U�T/c=5 and
with amplitude A=90.087U�T (Figure 10).

As was the case in all the comparisons, Figures 8–10 show a satisfactory agreement between
the present method and the others. Moreover, the computation times are equivalent.

5.3. Application to flapping 6ariable-geometry wings

To illustrate the capabilities of the present method to solve non-linear unsteady lifting
potential flow problems for wings of variable geometry, we present the calculation of flapping
wings of variable geometry. This case is based on works about the forward flight of birds
[16,17].
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Figure 9. Sectional circulation time variation of a rectangular planform (AR=6), sudden setting at incidence of 17°.

Consider a pair of flapping wings flying with a constant forward velocity Ub 0 and hinged
about a longitudinal axis x. The planform used in all the calculations is described in Figure 11.
The chord is constant along the inner half of each wing, and parabolically decreasing along the
outer half:

c(y)=Í
Ã
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Á

Ä
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4
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b
4
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b
2

. (37)

Figure 10. Sectional circulation time variation. Sinusoidal heaving oscillations of a rectangular planform (AR=3).
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Figure 11. Flapping wing planform.

Figure 12. Flapping plane.

The aspect ratio is 7.13. This planform shape is a good approximation of that of a pigeon.
The angle between the longitudinal axis and the flight path is u, as shown in Figure 12. The

wings flap in a plane perpendicular to this axis. The total angular amplitude of flapping is
fmax. The instantaneous angle between the wing and the horizontal is f(t), as shown in Figure
13. The angular flapping velocity is f: (t).

The flapping motion is periodic, and one complete period consists of a downstroke, an
upstroke and two transient motions. The length of the upstroke and the downstroke are
chosen to be equal. According to References [15] and [16], the downstroke produces lift and
thrust, whereas lift and drag are at their smallest during the upstroke. Using T to describe the
period length, oT/2 is the length of a transient motion. The assumption of constant angular
velocity of flapping f: is applied during the upstroke and the downstroke. f: is given by

Figure 13. Flapping angle.
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Figure 14. Spanwise and time variations of the circulation.

f: u=
2fmax

T(1−o)
, f: d= −

2fmax

T(1−o)
. (38)

During the transient motions, f has a sinusoidal variation.
In order to prevent unrealistic geometrical incidences, which result from the combination of

the forward and flapping motions, it is necessary to introduce a wing twist. This twist is such
as the resulting geometrical incidence does not exceed a set incidence amax during the
downstroke, and is zero during the upstroke. The twist is then respectively given by

a(y, t)=amax−arctan
�−sin u+f: dy

−cos u

�
, a(y, t)= −arctan

�−sin u+f: uy
−cos u

�
. (39)

During the transient motions, these twists are connected through a sinusoidal arc. Numerical
tests were run, which showed that the best results about thrust were obtained with a twist
rotation axis defined as the three-quarter line chord. This is why the three-quarter line chord
is rectilinear in the planform shape.

The motion parameters are T0 , a reduced flapping period, o, u, fmax and amax. The following
numerical results are obtained with the following parameters:

T=
10co

U�
, o=0.5, u=0o, fmax=80o, amax=20o.

For the wake geometry computation, the wings were divided into four equally spaced
chordwise elements and 30 spanwise, and the time step is UoDt/co=0.5. The airload prediction
required a more refined discretization. For the airload computation, the wings were divided
into ten equally spaced chordwise elements and 40 spanwise, and the time step is UoDt/co=
0.2. The regularization radius rc has been chosen as satisfactorily low as 0.01co. For 2.5
periods, the computation run-time values were :20 min and 10 h, respectively, on a Pentium
120 MHz personal computer. These values have been obtained without any particular
optimization of computation run-time.
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Figure 15. Lift coefficient time variation.

Figure 14 shows the spanwise variation with time of the circulation, and Figures 15 and 16
exhibit the variation of the lift and thrust–drag coefficients, respectively, throughout one
complete period of flapping motion. CD and CL are defined as

CD=
D

1
2rSU�2

, CL=
L

1
2rSU�2

, (40)

where D and L are, respectively, the components of the aerodynamic force parallel and
perpendicular to the flight direction described by Ub �, and S is the untwisted planform area.
These numerical results show the desired characteristics. Lift and thrust (CDB0) are essentially
produced on the downstroke, whereas the lift and drag are negligible on the upstroke. The
twist may not be optimal in relation to the flapping motion, as a peak of drag coefficient

Figure 16. Thrust/drag coefficient time variation.
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Figure 17. Wake geometrical shape at t0 =Uot/co=20.

appears during the second transient motion. Figure 17 displays the wake geometrical shape at
the reduced time t0 =Uot/co=20 after 2.5 calculated periods. In the distorted wake, the tip
roll-ups can be clearly noted.

6. CONCLUSIONS

On a basis of a rigorous and complete continuous theoretical formulation, a numerical method
has been developed to solve the unsteady 3D aerodynamics of lifting–propulsive systems.
Computational simulations were performed to validate this present approach.

The theory leads to a view of the vortex wake similar to that of a classical vortex lattice
approach, but using a discrete vortex particle concept, which is particularly well suited for the
unsteady deforming wake computation. This discrete vortex particle concept is not very far
from the one developed by Rehbach. However, it is founded on another theoretical basis,
leading to a simpler method of solution. Two main points have actually contributed to
reducing computational costs and improving flexibility compared with the vortex particle
methods. The first is the number of unknowns concerning the vortex particle at each time step
in the wake. The only unknown in the present method is the particle position, whereas the
particle position and strength are both unknown in the usual vortex particle method. Then the
second point concerns the algorithms used to solve the time variation equation. In fact, the
present method allows a treatment of wake deformations comparable with the vortex particle
methods, but without their limitations, and compares with classical vortex lattice approaches
in terms of computing costs. This method is even more flexible than the latter as far as the
choice of discretization parameter values are concerned.

The present method provides a basis for a more accurate treatment of more difficult
problems. At this stage of development, the method allows the treatment of wakes issued from
only the trailing edge because of the assumption described in Section 2.3. However, the general
theory allows wake shedding from any shedding line.
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Moreover, as this numerical approach stems from a complete theory, it is possible to
approximate the wake (geometry and doublet distribution) with other more precise discrete
schemes, such as a linear approximation of the discontinuity potential over the panels. An
approximation, having similarities with a finite element approach, is currently being studied. It
is also possible to switch from a refined discretization level to a less refined one, or inversely
during the computation, so that the near and far velocity inductions can be dealt with
differently.

Another development of this method is also to consider wake–wake and wake–body
interactions in a multi-element system, such as rotor blades. For such high aspect ratio
systems, we are now concentrating on associating the present unsteady wake model with an
unsteady lifting line model for the blades, such as in the recent work of Devinant [18].
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